

Leonardo Augusto Lobato Bello

Desenvolvimento de um pressiômetro de cravação com aplicação na determinação de propriedades mecânicas de resíduos sólidos

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor Engenharia Civil.

Orientadores: Tácio Mauro Pereira de Campos José Tavares Araruna Júnior

Rio de Janeiro, agosto de 2004

Leonardo Augusto Lobato Bello

Desenvolvimento de um pressiômetro de cravação com aplicação na determinação de propriedades mecânicas de resíduos sólidos

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil como requisito parcial para obtenção do título de Doutor em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Tácio Mauro P. de Campos Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. José Tavares Araruna Júnior Co-Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Pedricto Rocha Filho Departamento de Engenharia Civil – PUC-Rio

> **Prof. José Fernando Tomé Jucá** Universidade Federal de Pernambuco

Prof. Roberto Francisco de Azevedo Universidade Federal de Viçosa

Prof. Gustavo Ferreira Simões Universidade Federal de Minas Gerais

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de agosto de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Leonardo Augusto Lobato Bello

Graduou-se Engenheiro Civil em 1993 pela Universidade da Amazônia (UNAMA). Concluiu o mestrado em engenharia civil na PUC-Rio em 1997, onde estudou o emprego de micro estacas de bambu e cal na estabilização de encostas. Em 1998 foi convidado para compor o Grupo de Geotecnia Ambiental da UNAMA formado para realizar pesquisas sobre disposição de resíduos sólidos. Coordenou a implantação do Núcleo de Meio Ambiente da UNAMA em 1999 e é professor do CCET/UNAMA desde 1998, ministrando cadeiras do curso de Engenharia Civil.

Ficha Catalográfica

Bello, Leonardo Augusto Lobato

Desenvolvimento de um pressiômetro de cravação com aplicação na determinação de propriedades mecânicas de resíduos sólidos / Leonardo Augusto Lobato Bello; orientadores: Tácio Mauro Pereira de Campos e José Tavares Araruna Junior – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

v. 286 f.:;29,7cm

Tese (Doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

1. Engenharia Civil – Teses. 2. Pressiômetro. 3. Resíduo Sólido. 4.Investigação In Situ. 5.Parâmetros de Deformabilidade. I. Campos, Tácio Mauro Pereira de. II. Araruna Júnior, José Tavares. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

PUC-Rio - Certificação Digital Nº 0016545/CA

A Deus, por ter me dado saúde e Aos meus queridos pais pela educação que me proporcionaram.

Agradecimentos

Aos meus pais César e Sônia pelo incessante incentivo e irrestrito apoio durante mais este desafio de minha vida.

À minha querida mulher Sumaya pela sua paciência, apoio, companheirismo, zelo e amor, essenciais para que eu pudesse vencer este desafio. Obrigado por cada momento que tive o privilégio de estar ao seu lado.

Aos meus irmãos, irmã, cunhadas e sobrinha pela amizade, carinho e apoio.

Aos professores e amigos Tácio e Araruna pela séria orientação e irrestrito apoio.

A Universidade da Amazônia pelo apoio institucional pela minha liberação para doutoramento, em particular aos professores Evaristo Resende e Núbia Maciel.

Aos professores do departamento de engenharia civil da PUC-Rio responsáveis pala minha formação na área de Geotecnia.

Aos funcionários do departamento de engenharia civil Ana Roxo, Fátima, William, José, Josué e Amauri pela presteza, amizade e ajuda.

Ao professor Luis Gusmão pela fundamental ajuda na concepção e montagem das partes eletrônicas do pressiômetro.

Ao professor Clarke da Universidade de Newcastle, pela co-orientação e abertura institucional durante a fase de Doutorado Sanduíche na Inglaterra.

Ao professor Jucá da Universidade Federal de Pernambuco pelo apoio institucional e principalmente pelo convênio para as investigações no aterro da Muribeca.

Aos funcionários da prefeitura de Recife, em especial ao gerente e ao sub-gerente do aterro da Muribeca Washington e Adauto e ao engenheiro Eduardo.

Aos técnicos e à engenheira Odete Mariano do ITEP pela presteza, auxílio e dedicação durante a campanha da Muribeca.

Aos amigos do curso de pós-graduação que compartilharam os desafios do dia-adia, Ataliba, Ana Julia, Fred, Antônio, Ciro, Anna Paula, Eudes, Cleide, Luciana, Mônica, Patrício, Rafael, dentre tantos outros.

Finalmente, agradecimento importante à FIDESA, à CAPES e ao CNPq pelo suporte financeiro em todas as etapas desta da Tese.

Resumo

Bello, Leonardo A. L.; De Campos, Tácio M. P.; Araruna Junior, José T. **Desenvolvimento de um pressiômetro de cravação com aplicação na determinação de propriedades mecânicas de disposição de resíduos sólidos.** Rio de Janeiro, 2004. 286p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Para compreender as inúmeras variáveis que regem o comportamento tensão-deformação-resistência dos resíduos sólidos urbanos (RSU) muito se têm feito em laboratório na tentativa de modelar o que de fato acontece dentro das células de resíduos, com vários níveis de sucessos e insucessos. Entretanto, dificuldades na obtenção de amostras indeformadas ou na fabricação de amostras representativas da real condição de campo, podem ser fatores limitantes. Por outro lado, as técnicas diretas de investigação de campo trazem consigo o potencial de obter informações reais sobre um meio que é altamente heterogêneo e de comportamento dependente do tempo. Contudo, dadas as dificuldades operacionais e de interpretação estas não têm sido empregadas em RSU de maneira freqüente. Uma destas técnicas é o pressiômetro que, apesar de já consagrada, não tem sido usada em RSU a contento, sendo no Brasil inovadora. Considerando esta lacuna, a presente pesquisa engloba todas as fases de construção de um pressiômetro de cravação (Full Displacement) e a sua aplicação na investigação de parâmetros de deformabilidade de resíduos. Um sistema diferenciado de medição de deformações radiais foi projetado para tentar compatibilizar os níveis de deformações necessários e que emprega sensores do tipo Hall. Estes sistemas são colocados ao longo do corpo da sonda em direções ortogonais para avaliar o comportamento da membrana durante a expansão e contabilizar efeitos da heterogeneidade e anisotropia dos RSU. A aplicação do pressiômetro foi realizada no aterro da Muribeca-PE, onde se realizaram ensaios pressiométricos juntamente com sondagens à percussão, ensaios de penetração de cone e análises laboratoriais, cujos resultados foram interpretados com técnicas convencionais fornecendo propriedades mecânicas dos resíduos sólidos.

Palavras-chave

Pressiômetro, resíduo sólido, investigação in situ, parâmetros de deformabilidade.

Abstract

Bello, Leonardo A. L., De Campos, Tácio M. P. (Advisor); Araruna Júnior, José T. (Advisor). **Development of a full displacement pressuremeter towards evaluation of mechanical properties os solid waste.** Rio de Janeiro, 2004. 286p. DSc. Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

In order to understand the countless variables governing Municipal Solid Waste (MSW) stress-strain-strength behavior, much has been done in laboratory in the attempt of modeling what in fact happens inside the waste cells, with several levels of successes and failures. However, difficulties in obtaining undeformed samples or in preparing samples that represent real field conditions, given the high rank of heterogeneity in MSW landfills, could be limiting factors. On the other hand, direct field investigation techniques bring along great potential in obtaining in situ real information about an environment that is highly heterogeneous and time dependent. Unfortunately, operational and interpretation difficulties are limiting factors to a more common use of such techniques. One of these techniques is the Pressuremeter, which, despite of being already successfully applied in soils, has not been fairly used in MSW, particularly in Brazil which it has not been tested yet. Considering this gap, this research deals with the construction of a new full displacement pressuremeter and its application in MSW investigations. Unlike the prebored and self-boring techniques, the pressuremeter developed here can be directly pushed in the underground. During its construction and assembly stages a system to measure radial displacements was conceived, which makes use of Hall effect sensor in order to measure higher cavity strains. These systems are mounted along the probes' length in orthogonal directions in order to evaluate the membrane behavior during expansion, therefore accounting heterogeneity and anisotropy in MSW landfills. The application of such pressuremeter was carried out in the Muribeca (PE) landfill, where 16 pressuremeter tests were carried out along with standard penetration test, cone penetrometer tests and laboratory analyses, whose results were interpreted with conventional methodologies providing mechanical waste properties.

Key-words

Pressuremeter, solid waste, landfill, in situ investigation, deformability parameters.

Sumário

1 Introdução	26
1.1. Generalidades	26
1.2. Objetivos da Pesquisa	29
1.3. Organização do Trabalho	30
2 Os Pressiômetros	32
2.1. Definição	32
2.2. Origem Histórica	33
2.3. Tipos	34
2.3.1. Pressiômetros de Pré-Furo	35
2.3.2. Pressiômetros Autoperfurantes (PAP)	39
2.3.3. Pressiômetros de Cravação (PC)	42
2.3.3.1. Full Displacement Pressuremeter – Cone Pressiômetro	43
2.4. Interpretação de Ensaios Pressiométricos	44
2.4.1. Evolução Histórica	44
2.4.2. Teoria da Expansão de Cavidade	50
2.4.2.1. Modelo Conceitual	50
2.4.2.2. Distribuição de Tensões	52
2.4.2.3. Análise da Expansão da Cavidade – regime elástico	54
2.4.3. Interpretação de Parâmetros	56
2.4.3.1. Tensão Horizontal (σ_h)	57
2.4.4. Módulo Cisalhante (G)	60
2.4.4.1. Módulo Inicial	60
2.4.4.2. Modulo de Descarregamento – Recarregamento (G_{ur})	61
2.4.4.3. Resistência ao Cisalhamento Não-Drenada (S _u)	62
2.4.4.4. Ângulo de Atrito (64
3 Propriedades Mecânicas dos RSU	67
3.1. Introdução	67

3.2. Parâmetros de Resistência ao Cisalhamento	68
3.2.1. Investigações de Laboratório	69
3.2.1.1. Resultados de Ensaios de Cisalhamento Direto e Simples	69
3.2.1.2. Resultados de Ensaios Triaxiais e de Compressão não Confir	ada74
3.2.2. Ensaios de Campo em RSU	79
3.2.2.1. Resultados de Cisalhamento Direto	79
3.2.2.2. Outras Metodologias	80
3.2.3. Retro-análises de Ensaios com RSU	82
3.3. Resistência a Deformabilidade de RSU	83
3.3.1. Parâmetros de Deformação em RSU por ensaios dinâmicos.	84
3.3.2. Parâmetros de Deformabilidade de RSU por ensaios estáticos.	87
3.3.2.1. Investigações com Pressiômetros em RSU	90
4 Desenvolvimento do Pressiômetro de Cravação	96
4.1. Introdução	96
4.2. Estudos de Projeto do PC-RSU	96
4.2.1. Fundamentos da Instrumentação da Sonda	96
4.2.2. Sensor de Deslocamento Empregado	99
4.2.3. Avaliação de Protótipos para Projeto	101
4.3. Construção das Sondas Pressiométricas	107
4.4. Característica das Demais Partes Constituintes	110
4.4.1. Membrana Semiflexível	110
4.4.2. Sistema de Fixação da Membrana	111
4.4.3. Ponteira Cônica	113
4.4.4. Mangueira e Conexões Hidráulicas de Pressão	113
4.4.5. Separador Elétrico-Gasoso (SEG)	114
4.4.6. Caixa de Controle de Pressões	116
4.4.7. Condicionamento Eletrônico e Aquisição de Dados	118
4.4.8. Fonte de Pressão	120
4.4.9. Dispositivos de Instrumentação da Sonda	121
4.4.9.1. Transdutor de Pressão	121
4.4.9.2. Transdutor de Deslocamento	121
4.4.9.3. Sensor de Temperatura	122

4.4.10. Cabos Elétricos e Convenção de Cores	124
4.5. Procedimentos para Colocação da Membrana	125
4.6. Calibrações das Sondas Pressiométricas	127
4.6.1. Calibração do Sensor de Temperatura	127
4.6.2. Calibração dos Transdutores de Deslocamentos (HET)	129
4.6.2.1. Metodologia	129
4.6.2.2. Ajuste no Programa de Aquisição	131
4.6.2.3. Ajuste no Circuito de Amplificação	132
4.6.2.4. Resultados das Calibrações	134
4.6.2.5. Avaliação do Sistema de Medição de Deslocamento (SMD)	136
4.6.3. Calibração dos Transdutores de Pressão	138
4.6.4. Avaliação da Conectividade de Pressão	139
4.6.5. Calibração da Membrana Semiflexível	141
4.6.5.1. Rigidez da Membrana	141
4.6.5.2. Correção do Afinamento da Parede da Membrana	145
5 Campanha de Investigações em ADRSU	149
5.1. Descrição do Local	149
5.2. Células Experimentais	150
5.2.1. Célula 05	151
5.2.2. Célula 04	152
5.3. Locação dos Pontos	154
5.4. Equipe envolvida nas investigações	155
5.5. Ensaios <i>In Situ</i> Realizados	155
5.5.1. Ensaios Pressiométricos	155
5.5.1.1. Metodologias de Instalação Empregas	155
5.5.1.2. Procedimentos do Ensaio PMT	161
5.5.1.3. Avaliação do Desempenho da Membrana	163
5.5.2. Sondagens à Percussão em RSU (SPT)	166
5.5.2.1. Metodologia de Execução	166
5.5.2.2. Representatividade dos Ensaios SPT em RSU	168
5.5.3. Sondagens de Penetração Estática em RSU (CPT)	169
5.5.3.1. Metodologia de Execução	169

5.5.4. Análises Laboratoriais	170
5.5.4.1. Ensaio de Teor de Umidade ($\% w_r$)	170
5.5.4.2. Ensaio de Teor de Sólidos Voláteis (%SV)	171
5.6. Apresentação de Resultados	171
5.6.1. Resultados de Campo - PMT	171
5.6.2. Resultados de Campo - SPT	172
5.6.3. Resultados de Campo - CPT	172
5.6.4. Resultados de Laboratório – umidade e sólidos voláteis	178
6 Análise e Interpretação dos Resultados	179
6.1. Introdução	179
6.2. Ensaios Pressiométricos	182
6.2.1. Correção das Curvas Pressiométricas	182
6.2.2. Avaliação Qualitativa das Curvas Pressiométricas	198
6.2.3. Influência do Procedimento de Instalação nas Curvas $p \ x \ \varepsilon_c$	202
6.2.4. Determinação do Módulo Cisalhante - G	206
6.2.4.1. Metodologia de Análise	206
6.2.4.2. Variação de <i>G</i> em Profundidade	207
6.2.4.3. Perfil de variação de <i>G</i> com deformação	213
6.2.4.4. Influencia da Idade do Resíduo em <i>G</i>	216
6.2.5. Tensão Horizontal (σ_h) e Coeficiente de Empuxo Lateral (K_r)	220
6.2.5.1. Metodologia de Análise	220
6.2.5.2. Variação de σ_h em Profundidade	222
6.2.5.3. Coeficiente de Empuxo Lateral	223
6.3. Ensaios SPT	226
6.4. Ensaios CPT	228
6.5. Ensaios Laboratoriais – Teor de Umidade e de Sólidos Voláteis	230
6.6. Algumas Análises Comparativas entre Ensaios	231
6.6.1. Correlações entre G_{ur} , q_c e N_{spt}	231
6.6.2. Avaliação do efeito de %SV e %wr em Gur	233
7 Conclusões e Sugestões	236
7.1. Desenvolvimento do Equipamento	236

7.2. Aplicação do Equipamento	240
7.3. Análise Crítica Sobre a Interpretação das Curvas	242
7.4. Sugestões de Continuidade da Pesquisa	247
8 Referências Bibliográficas	250
Apêndice I – Avaliação do Desempenho dos SMD	263
Apêndice II – Desenhos da Sonda	267
Anexo I – Laudos de Sondagem SPT	282

Lista de Figuras

Figura 1- Desenho esquemático do conjunto de um pressiômetro de cravação	32
Figura 2 – Fotos de pressiômetros do tipo Ménard e componentes.	37
Figura 3 - Detalhes e fotos do Dilatômetro de Alta Pressão (HPD) da Cambrid	dge
Insitu.	37
Figura 4- Detalhes e fotos de alguns PPF da empresa OYO Corporation.	38
Figura 5- Princípio básico do PAP e justificativa para distúrbios mínimos (Clarke,	
1995).	40
Figura 6- Detalhes de alguns PAP disponíveis no mercado Inglês.	41
Figura 7 – Foto do PAP da Cambridge Insitu e suas partes constituintes.	42
Figura 8 - Detalhes das partes de um Cone Pressiômetro (Withers et al. 1986).	44
Figura 9- Definição de parâmetro de estado do solo – areias.	48
Figura 10- Definições dos raios empregados nas análises e das trajetórias	de
tensões em ensaios não drenados: (a) condição in situ; (b) após instalação;	(c)
na máxima expansão pressiométrica; (d) durante contração (Houlsby	&
Withers, 1988).	52
Figura 11- Definições empregadas na análise: (a) expansão de uma cavid	ade
cilíndrica; (b) expansão de um elemento no raio r; (c) estado de tensões	no
elemento do raio r.	53
Figura 12- Influência do raio inicial da cavidade e tipo de pressiômetro em σ_h .	57
Figura 13- Ciclos de descarregamento e recarregamento mostrando inclinaç	ões
usadas para estimar Gu, Gr, Em- e Gur (inclinação é o dobro do mód	lulo
cisalhante): (a) módulos cisalhantes; (b) módulos elásticos.	62
Figura 14- Interpretação de ensaios com PAP para determinação de S _u .	63
Figura 15- Determinação de S_u , σ_h e G segundo Houslby e Withers (1988).	64
Figura 16- Determinação de ϕ ' através de ensaios com PAP's em areias densas	
(Clarke 1997).	64
Figura 17 - Curvas típicas de tensão cisalhante x desl. horizontal obtidas	em
ensaios de cisalhamento direto (Edincliler et al. 1996).	73

Figura 18 - Envoltória de resistência obtida por cisalhamento direto (Edincliler et

<i>al.</i> 1996). 73
Figura 19 - Parâmetros $c \in \phi$ de ensaios triaxiais com dois diferentes tipos de
resíduo (adaptado de Jessberger e Kockel, 1991). 76
Figura 20 - Comportamento tensão deformação com endurecimento observado em
ensaios triaxiais (Jessberger e Kockel, 1995). 77
Figura 21- Comportamento tensão-deformação em ensaios triaxiais com RSU
(Vilar & Carvalho, 2002). 78
Figura 22 - Resultados de cisalhamento direto no aterro de Doña Juana (Caicedo
<i>et al.</i> , 2002b). 80
Figura 23 - Parâmetros oriundos de retro-análises em RSU (Howland & Landva,
1992). 82
Figura 24- Esquema simplificado da técnica de cross-hole.85
Figura 25 – Faixa de valores de G_0 obtidos a partir de ensaios geofísicos 88
Figura 26- Definições para determinação da pressão de puncionamento89
Figura 27- Análise comparativa entre alguns módulos de rigidez disponíveis na
literatura (Jessberger & Kockel, 1995). 90
Figura 28 - Curva pressiométrica de um PAP em RSU (Dixon <i>et al</i> , 1999).93
Figura 29 - Módulo cisalhante de RSU através de PAP, a 1% de deformação da
cavidade (Dixon e Jones, 1998) 93
Figura 30 - Análise comparativa entre G disponíveis na literatura (Dixon e Jones,
1998). 94
Figura 32 - Sistemas de medições de deslocamentos em pressiômetros.98
Figura 33 - Relações tensão-deslocamento em ensaios com RSU.99
Figura 34 - Fatores intervenientes na ruptura da membrana pressiométrica. 100
Figura 35 - Detalhe e foto do transdutor de efeito Hall utilizado.101
Figura 36 - Detalhe do sistema de medição existente concebido por Akbar (2001).
102
Figura 37 – Projetos piloto com movimento de imã paralelo ao HET. 102
Figura 38- Respostas típicas do HET para movimentos relativos lineares. 102
Figura 39- Esquema inicial do movimento dos imãs em relação ao HET. 103
Figura 40 – Fotos dos imãs tipo botão usados nos protótipos. 104
Figura 41 - Influência da distância/alinhamento dos imãs nas calibrações do
protótipo. 105

Figura 42 - Melhores curvas de calibração do segundo protótipo.	106
Figura 43 - Fotos do protótipo final do SMD com o HET e imãs mostrados.	106
Figura 44 - Resultados de calibrações com o protótipo final em ciclos	de
expansão/contração.	107
Figura 45 - Desenhos esquemáticos do corpo central das sondas SP-I e SP-II.	108
Figura 46 - Perfuração de furo longitudinal para dar acesso à fiação e	gás
pressurizado.	109
Figura 47 - Detalhe da rosca M30x1,5 em cada extremidade das sondas.	109
Figura 48 - Torneamento das cavidades para o SMD.	110
Figura 49 - Detalhes da membrana semi flexível de borracha.	111
Figura 51 – Esquema da fixação da membrana no topo das sondas	113
Figura 52 - Construção da mangueira de alta pressão Euroflow 702.	114
Figura 53 – Detalhes da mangueira de pressão e conectores.	115
Figura 54 - Detalhe do separador elétrico-gasoso.	115
Figura 55 - Detalhe frontal do painel da caixa de controle.	117
Figura 56 - Detalhe das conexões e tubulações internas da caixa de controle.	117
Figura 57 – Fotos da caixa eletrônica de amplificação e aquisição.	118
Figura 58 - Bateria recarregável de 12V usada como fonte de alimentação) do
circuito.	119
Figura 59 – Detalhes do CI de amplificação da caixa eletrônica.	119
Figura 60 - Conversor analógico-digital de 8 canais usado para aquisição.	120
Figura 61 – Fonte de pressão conectada na caixa de controle de pressões	121
Figura 62 – Detalhes sobre a aplicação do sensor de temperatura LM35.	123
Figura 63 – Fotos do sensor de temperatura e sua localização na sonda.	123
Figura 64 – Esquema da conexão elétrica do sensor de temperatura.	123
Figura 65 - Exemplo ilustrativo dos cabos elétricos utilizados.	124
Figura 66 – Fotos do procedimento de colocação da membrana.	127
Figura 67 – Resultados da calibração do sensor de temperatura da sonda SP1.	128
Figura 68 – Resultados da calibração do sensor de temperatura da sonda SP2.	129
Figura 69 - Dispositivos empregados na calibração dos transdutores	de
deslocamento.	131
Figura 70 – Exemplo da saída gráfica do programa Picolog durante calibraçõe	s do
transdutor de deslocamento.	132

Figura 71 – Comparação entre sinais com e sem ajuste de <i>offset</i> nara a	condição
de braco recolhido	133
Figura 72 – Resultados da calibração dos transdutores de deslocamentos	da sonda
SP1	134
Figura 73 – Resultados da calibração dos transdutores de deslocamentos	da sonda
SP2.	135
Figura 74 – Calibrador <i>Budenberg</i> para transdutores de pressão.	139
Figura 75 – Resultados das calibrações dos transdutores de pressão.	139
Figura 76 – Detalhe da câmara para aferir velocidade transferência de pr	essão (a);
resultados do ensaios (b),(c) e (d)	141
Figura 77 – Exemplo de curva de calibração da rigidez de membrana	s (Clarke,
1995).	142
Figura 78 – Membrana após ensaio destrutivo.	143
Figura 79 – Estágios de expansão da membrana durante ensaio de cali	bração da
membrana – deslocamento radial (d_r) ; media de todos os Het's (so	nda SP2).
	144
Figura 80 – Deslocamento radial de cada Het na expansão da membrana	ao ar. 144
Figura 81 - Curva de ajuste do deslocamentos radiais médios no	ensaio de
expansão da membrana ao ar.	145
Figura 82 - Curvas de ajustes por transdutor: na compressão, na expan	isão e em
todos os pontos	146
Figura 83 - Afinamento da membrana no PC-RSU segundo teoria o	de Clarke
(1995)	148
Figura 84 – Desenho esquemático das células do aterro da Muribeca	150
Figura 85 - Fotos do topo da célula 08: (a) catadores na frente de ope	ração; (b)
espalhamento na adjacência com célula 04	151
Figura 86 – Média histórica de precipitação na região do aterro da Murib	eca (1971
- 2001) e precipitação nos primeiros meses de 2004 (Instituto Na	acional de
Meteorologia)	151
Figura 87 – Esquema da disposição das camadas de lixo nas células inv	estigadas.
	152
Figura 88 – Fotos da Célula 05 durante a campanha de ensaios.	153
Figura 89 – Fotos da Célula 04 durante a campanha de ensaios.	153

Figura 90 – Planta de locação dos pontos de investigação na Muribeca 154
Figura 91 - Sistema de cravação do PMT usado no aterro da Muribeca: (a)
cravador; (b) trado de reação; (c) fixação das reações; (d) trados fixados. 157
Figura 92 – Reação à cravação da sonda SP1 no furo PMT1. 158
Figura 93 – Detalhes da membrana danificada após cravação direta 158
Figura 94 - Resíduo da camada superficial célula 5: (a) retirada manual; (b) in
natura; (c) vergalhão no furo; (d) materiais diversos 159
Figura 95 – Trado do SPT alinhado com cravador do PMT/CPT 160
Figura 96 - Detalhe de perfuração da membrana ocorrida durante a expansão no
PTM2 162
Figura 97 - Fotos de algumas etapas de instalação anteriores ao ensaio: (a) caixa
de controle, circuito e computador montados e acoplados; (b) mangueira
passada pelas hastes; (c) sonda montada e conectada. 163
Figura 98 - Fotos da etapa de instalação do pressiômetro: (a) e (b) inserção da
sonda; (c) colocação das hastes; (d) cravação do conjunto. 164
Figura 99 - Fotos da etapa de execução do ensaio: (a) aplicação dos acréscimos de
pressão; (b) aquisição automática. 164
Figura 100 – Exemplo ilustrativo da saída gráfica durante um ensaio
pressiométrico no aterro da Muribeca (PMT3 -6m) 165
Figura 101 - Fotos de danos à membrana: (a) dano superficial na camada de
reforço; (b) membrana com ruptura localizada. 166
Figura 102 – Equipe realizando ensaio de SPT em RSU. 167
Figura 103 - Amostragem durante ensaios SPT em RSU: (a) amostrador padrão;
(b) abertura do amostrador; (c) material bem recuperado; (d) parcela da
amostra representativa. 168
Figura 104 - Entupimento da ponteira com plástico durante ensaio SPT com
pouca recuperação de material. 169
Figura 105 - Curvas pressão x deslocamento PMT1- dados brutos, sem correção
da rigidez da membrana. 173
Figura 106 - Curvas pressão x deslocamento PMT2- dados brutos, sem correção
da rigidez da membrana. 174
Figura 107 – Curvas pressão x deslocamento PMT3– dados brutos, sem correção
da rigidez da membrana 175

Figura 108 – Curvas pressão x deslocamento PMT4– dados brutos, sem correçã	ίο
da rigidez da membrana 17	6
Figura 109 – Resultados de ensaios SPT: (a) Célula 05; (b) Célula 04 17	'7
Figura 110 – Variação de $q_c e f_s$ na célula C5. 17	7
Figura 111 – Variação de $q_c e f_s$ na Célula 04. 17	7
Figura 112 – Variação de teor de umidade e sólidos voláteis na célula C5. 17	'8
Figura 113 – Variação de teor de umidade e sólidos voláteis na célula C4. 17	'8
Figura 114 – Histograma de distribuição de q_c nas células C4 e C5. 18	31
Figura 115 Histograma de distribuição de R_a nas células C4 e C5. 18	31
Figura 116 - Classificação do RSU do aterro da Muribeca com ábaco d	le
Schmertmann (1978) 18	31
Figura 132 - Considerações sobre qualidade de ensaios pressiométricos segund	lo
Clarke (1995): (a) efeito da instalação no trecho inicial de curvas com PAF	P;
(b) efeito do tipo de solo nas curvas com PAP; (c) e (d) efeito da instalaçã	io
no formato geral. 19	19
Figura 133 – Curva $p \ge \varepsilon_c$ ideal de pressiômetros de cravação do tipo FDPM. 20-)4
Figura 134 – Evolução do estado de tensão na parede do pré-furo do PMT. 20.)5
Figura 135 – Exemplo do procedimento para obtenção de G_{ur} . e G_r . 20)6
Figura 136 - Variação do módulo cisalhante com profundidade nas célula	as
investigadas. 20)8
Figura 137 – Avaliação da variação de G com a profundidade na célula C5. 21	0
Figura 138 - Aumento da rigidez cisalhante do resíduo com o nível de tensões	s.
21	2
Figura 139 – Análise comparativa da variação G com profundidade e nível d	le
tensões. 21	3
Figura 140 - Avaliação da variação do módulo cisalhante do resíduo com o níve	el
de deformação do ciclo: C5 (a) e (b); C4 (c) e (d). 21	4
Figura 141 – Estimativa da taxa de enchimento das células investigadas. 21	6
Figura 142 – Efeito da idade do resíduo no módulo cisalhante do ciclo nas células	
C4 e C5 através de ajuste linear. 21	7
Figura 143 – Variação de G_{ur}/G_0 em função da idade do RSU. 21	8
Figura 144 – Comparação entre valores de G_{ur} obtidos com pressiômetro no aterro	
da Muribeca e adaptado de ensaios de cross-hole no aterro Bandeirantes. 21	9

Figura 145 – Tensão horizontal obtida nos ensaios pressiométricos. 223
Figura 146 – Tensões verticais e horizontais nas células investigadas. 224
Figura 147 – Variação do coeficiente de empuxo do resíduo (K_r) com a
profundidade. 225
Figura 148 – Efeito da idade do resíduo na variação de Kr calculado.225
Figura 149 – Valores médios de N_{spt} nas células investigadas. 226
Figura 150 – Correlação entre $N_{spt(60\%)}$ e ϕ segundo Décourt (1991) para solos. 227
Figura 151 – Ângulo de atrito do RSU calculado segundo correlação proposta
para N_{spt} de solos. 227
Figura 152 – Curvas de ajuste da variação de q_c com profundidade nos ensaios
CPT. 229
Figura 153 – Resultados na análise da variação de ϕ em profundidade nos ensaios
CPT. 229
Figura 154 – Variação dos teores de umidade e de sólidos voláteis nas células C4
e C5 231
Figura 155 – Correlação entre $G_{ur} \ge q_c$ nas células C4 e C5. 232
Figura 156 – Correlação entre G_{ur} x N_{spt} nas células C4 e C5. 232
Figura 157 – Correlação entre $q_{c'}$ e N_{spt} nas células C4 e C5. 232
Figura 159 – Influência do %SV na variação dos módulos cisalhantes dos ciclo.
235
Figura 160 – Influência do %SV na variação dos módulos cisalhantes dos ciclo.

235

Lista de Tabelas

Tabela 1 – Subtipos de pressiômetros de Pré-Furo (Briaud, 1992)36	
Tabela 2 - Principais características de alguns pressiômetros disponíveis na	
Inglaterra (Mair & Wood, 1987)36	
Tabela 3- Fatores que podem interferir na interpretação de testes pressiométricos	
em solos (Clarke, 1997). 45	
Tabela 4- Exemplos de métodos de interpretação comumente usados em ensaios	
pressiométricos (Clarke, 1995). 58	
Tabela 5 - Terminologia empregada na definição de módulos provenientes de	
ensaios pressiométricos (Clarke, 1995). 60	
Tabela 6 - Valores típicos de \$\phi'_{cv}\$ (Robertson & Hughes, 1986).65	
Tabela 7 - Parâmetros de resistência de fardos de RSU compactados e liners (Del	
Greco & Oggeri,1994). 71	
Tabela 8- Parâmetros de resistência de ensaios triaxiais em resíduo selecionado e	
moído (adaptado de Jessberger e Kockel, 1991). 76	
Tabela 9 - Parâmetros de resistência ajustados a diferentes densidades (adaptado	
de Vilar e Carvalho, 2002). 79	
Tabela 10 - Parâmetros de resistência de aterros na Polônia por investigação direta	
(Koda, 1997). 81	
Tabela 11- Velocidades de propagação e respectivos parâmetros obtidos pela	
técnica de cross-hole (Sharma <i>et al.</i> 1990). 86	
Tabela 12- Velocidades de propagação e respectivos parâmetros obtidos pela	
técnica de down-hole (Houston <i>et al.</i> 1995). 87	
Tabela 13 - Folha característica das mangueiras Euroflow 702.114	
Tabela 14 - Convenção de cores dos fios adotada.124	
Tabela 15 - Convenção de pinos usada na conexão do ADC-16 com a caixa	
eletrônica. 125	
Tabela 16 - Resumo das equações de calibração dos sensores de temperatura. 129	
Tabela 17 – Resumo das calibrações dos SMD realizada em novembro/2003. 135	
Tabela 18 - Sensibilidade dos transdutores de deslocamento das sondas	
pressiométricas. 136	

Tabela 19 - Resumo das etapas e procedimentos empregados nos ensa	ios PMT.
	162
Tabela 20 – Avaliação da performance do Het 1 – sonda SP1.	264
Tabela 21 – Avaliação da performance do Het 2 – sonda SP1.	264
Tabela 22 – Avaliação da performance do Het 3 – sonda SP1.	265
Tabela 23 – Avaliação da performance do Het 4 – sonda SP1.	265
Tabela 24 – Avaliação da performance do Het 1 – sonda SP2.	266
Tabela 25 – Avaliação da performance do Het 2 – sonda SP2.	266
Tabela 26 – Avaliação da performance do Het 3 – sonda SP2.	266

Lista de Símbolos

- %SV-teor de sólidos voláteis do resídu
- %wr teor de umidade do resíduo
- Ψ ângulo de dilatância
- ξ parâmetro de estado (consistência) areia
- \mathcal{E}_c deformação da cavidade
- \mathcal{E}_r deformação radial
- δ_r –espessura de um elemento de solo no raio r
- δ_y –espessura de um elemento de solo no raio y
- \mathcal{E}_{θ} deformação circunferencial
- £ libras esterlinas
- ADRSU aterros de disposição de resíduos sólidos urbanos
- B diâmetro da placa
- c coesão
- C4 célula número 4 do aterro da Muribeca
- C5 célula número 5 do aterro da Muribeca
- CI circuito integrado
- CP cone pressuremeter
- CPT cone penetretaion test
- CPTU piezocone penetration test
- D diâmetro
- de_0 diâmetro externo inicial da cavidade da sonda com membrana
- def diâmetro externo final da cavidade da sonda com membrana
- di_0 diâmetro interno inicial da cavidade da sonda sem membrana
- di_f diâmetro interno final da cavidade da sonda sem membrana
- e índice de vazio
- E_d módulo de elasticidade dinâmico
- E_m deformação máxima
- E_m módulo de elasticidade de Ménard
- em_0 espessura inicial da parede da membrana
- em_f espessura inicial da parede da membrana

F – faixa de leitura

- FDPM full displacement pressuremeter
- f_s atrito lateral no ensaio de cone
- FS full scale
- g aceleração da gravidade
- G módulo de cisalhamento
- G_d , G_0 módulo cisalhante dinâmico ou máximo
- Gm módulo de cisalhamento de Ménard
- GPS global positioning system
- G_r módulo de cisalhamento secante
- G_{ur} módulo de cisalhamento do ciclo
- H(%) histerese
- HET hall effect transducer
- HPD high pressure dilatometer
- Ir índice de rigidez
- IRSU-idade do resíduo
- ITEP instituto tecnológico de Pernambuco
- K_r coeficiente de empuxo do resíduo
- L comprimento
- l_0 comprimento inicial da membrana
- l_f comprimento final da membrana
- LVDT linear variable differential transducer
- MVV medidor de variação volumétrica
- N_{spt} índice de resistência à penetração do amostrador do SPT
- p pressão qualquer
- PAP pressiômetro autoperfurante
- PC pressiômetro de cravação
- PEAD polietileno de alta densidade
- p_F pressão de escoamento
- p_h pressão no início do regime elástico
- PIP push in pressuremeter
- p_L pressão limite do ensaio pressiométrico
- PMT pressuremeter test

- PPF pressiômetro de pré-furo
- PVC polyvinil chlorine
- $p_{\rm v}$ pressão do ponto de inflexão da reta virgem
- q_c resistência de ponta do cone
- R(%) repetibilidade
- r, a raio genérico de uma cavidade
- r_0 , a_0 raio inicial de uma cavidade
- R_a razão de atrito do ensaio de cone
- RSU resíduos sólidos urbanos
- SEG separador elétrico-gasoso
- SMD sistema de medição de deslocamentos
- SP1 sonda pressiométrica 1
- SP2 sonda pressiométrica 2
- Su resistência não drenada
- t tempo
- USB universal serial bus (porta)
- V-volume
- V_0 volume inicial
- V_c velocidade de propagação da onda de compressão
- Vm_0 volume inicial da parede da membrana
- V_{max} valor de leitura máxima
- Vm_f volume final da parede da membrana
- V_{min} valor de leitura mínima
- V_s velocidade de propagação da onda cisalhante
- x_c leitura média na contração
- x_e leitura média na expansão
- Δl variação no comprimento da membrana
- Δp variação de pressão
- ΔS recalque da placa
- ΔV variação de volume
- $\Delta \mathcal{E}$ variação de deformação
- ϕ ângulo de atrito interno
- ϕ_{cv} ângulo de atrito em volume constante

- γ peso específico genérico
- γ_r peso específico do resíduo
- v coeficiente de Poisson
- v_d coeficiente de Poisson dinâmico
- ρ densidade
- σ_l tensão principal maior
- σ_2 tensão principal menor
- σ_h tensão horizontal
- σ_r tensão radial
- σ_v tensão vertical
- σ_{θ} tensão circunferencial